Gravitaxis in Paramecium
نویسندگان
چکیده
منابع مشابه
The mechanics of gravitaxis in Paramecium.
An analysis of swimming patterns in the ciliate Paramecium shows that the ability to swim preferentially upwards (negative gravitaxis) is primarily the result of upwardly curving trajectories. The trajectory characteristics are consistent with those produced by mechanical orientation. Cell profile measurements from microscope images suggest that the characteristic front-rear body asymmetry acco...
متن کاملGravitaxis in Spherical Janus Swimming Devices
In this work, we show that the asymmetrical distribution of mass at the surface of catalytic Janus swimmers results in the devices preferentially propelling themselves upward in a gravitational field. We demonstrate the existence of this gravitaxis phenomenon by observing the trajectories of fueled Janus swimmers, which generate thrust along a vector pointing away from their metallically coated...
متن کاملGravitaxis of asymmetric self-propelled colloidal particles.
Many motile microorganisms adjust their swimming motion relative to the gravitational field and thus counteract sedimentation to the ground. This gravitactic behaviour is often the result of an inhomogeneous mass distribution, which aligns the microorganism similar to a buoy. However, it has been suggested that gravitaxis can also result from a geometric fore-rear asymmetry, typical for many se...
متن کاملGravitaxis in Chlamydomonas reinhardtii studied with novel mutants.
Many free-swimming unicellular organisms show negative gravitaxis, i.e. tend to swim upward, although their specific densities are higher than the medium density. To obtain clues to the mechanism of this behavior, we examined how a mutation in motility or behavior affects the gravitaxis in Chlamydomonas. A phototaxis mutant, ptx3, deficient in membrane excitability showed weakened gravitaxis, w...
متن کاملGraviresponses in Paramecium biaurelia under different accelerations: studies on the ground and in space
Behavioural responses to different accelerations below 1 g and up to 5 g were investigated in Paramecium biaurelia by using a centrifuge microscope on Earth and in space during a recent space flight. Increased stimulation (hypergravity) enhanced the negative gravitactic and the gravikinetic responses in Paramecium biaurelia within seconds. Cells did not adapt to altered gravitational conditions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biological Sciences in Space
سال: 1988
ISSN: 1349-967X,0914-9201
DOI: 10.2187/bss.2.228